Telomeric ORFs (TLOs) in Candida spp. Encode Mediator Subunits That Regulate Distinct Virulence Traits
نویسندگان
چکیده
The TLO genes are a family of telomere-associated ORFs in the fungal pathogens Candida albicans and C. dubliniensis that encode a subunit of the Mediator complex with homology to Med2. The more virulent pathogen C. albicans has 15 copies of the gene whereas the less pathogenic species C. dubliniensis has only two (CdTLO1 and CdTLO2). In this study we used C. dubliniensis as a model to investigate the role of TLO genes in regulating virulence and also to determine whether TLO paralogs have evolved to regulate distinct functions. A C. dubliniensis tlo1Δ/tlo2Δ mutant is unable to form true hyphae, has longer doubling times in galactose broth, is more susceptible to oxidative stress and forms increased levels of biofilm. Transcript profiling of the tlo1Δ/tlo2Δ mutant revealed increased expression of starvation responses in rich medium and retarded expression of hypha-induced transcripts in serum. ChIP studies indicated that Tlo1 binds to many ORFs including genes that exhibit high and low expression levels under the conditions analyzed. The altered expression of these genes in the tlo1Δ/tlo2Δ null mutant indicates roles for Tlo proteins in transcriptional activation and repression. Complementation of the tlo1Δ/tlo2Δ mutant with TLO1, but not TLO2, restored wild-type filamentous growth, whereas only TLO2 fully suppressed biofilm growth. Complementation with TLO1 also had a greater effect on doubling times in galactose broth. The different abilities of TLO1 and TLO2 to restore wild-type functions was supported by transcript profiling studies that showed that only TLO1 restored expression of hypha-specific genes (UME6, SOD5) and galactose utilisation genes (GAL1 and GAL10), whereas TLO2 restored repression of starvation-induced gene transcription. Thus, Tlo/Med2 paralogs encoding Mediator subunits regulate different virulence properties in Candida spp. and their expansion may account for the increased adaptability of C. albicans relative to other Candida species.
منابع مشابه
Telomeric ORFS in Candida albicans: Does Mediator Tail Wag the Yeast?
Recent studies of fungal genomes have shown that subtelomeric regions of chromosomes are areas of rapid evolution that facilitate adaptation to novel niches [1]. Several years ago, analysis of the genome of the human pathogenic yeast Candida albicans revealed the presence of a large family of telomeric orfs (TLO genes) [2]. The function of this gene family remained an enigma in C. albicans gene...
متن کاملThe Functions of Mediator in Candida albicans Support a Role in Shaping Species-Specific Gene Expression
The Mediator complex is an essential co-regulator of RNA polymerase II that is conserved throughout eukaryotes. Here we present the first study of Mediator in the pathogenic fungus Candida albicans. We focused on the Middle domain subunit Med31, the Head domain subunit Med20, and Srb9/Med13 from the Kinase domain. The C. albicans Mediator shares some roles with model yeasts Saccharomyces cerevi...
متن کاملAmplification of TLO Mediator Subunit Genes Facilitate Filamentous Growth in Candida Spp.
Filamentous growth is a hallmark of C. albicans pathogenicity compared to less-virulent ascomycetes. A multitude of transcription factors regulate filamentous growth in response to specific environmental cues. Our work, however, suggests the evolutionary history of C. albicans that resulted in its filamentous growth plasticity may be tied to a change in the general transcription machinery rathe...
متن کاملHOS2 and HDA1 Encode Histone Deacetylases with Opposing Roles in Candida albicans Morphogenesis
Epigenetic mechanisms regulate the expression of virulence traits in diverse pathogens, including protozoan and fungi. In the human fungal pathogen Candida albicans, virulence traits such as antifungal resistance, white-opaque switching, and adhesion to lung cells are regulated by histone deacetylases (HDACs). However, the role of HDACs in the regulation of the yeast-hyphal morphogenetic transi...
متن کاملReal-Time Evolution of a Subtelomeric Gene Family in Candida albicans
Subtelomeric regions of the genome are notable for high rates of sequence evolution and rapid gene turnover. Evidence of subtelomeric evolution has relied heavily on comparisons of historical evolutionary patterns to infer trends and frequencies of these events. Here, we describe evolution of the subtelomeric TLO gene family in Candida albicans during laboratory passaging for over 4000 generati...
متن کامل